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The metal content of 46 tea samples, including green, black, and instant teas, was analyzed. Al,
Ba, Ca, Cu, Fe, K, Mg, Mn, Na, Sr, Ti, and Zn were determined by ICP-AES. Potassium, with an
average content of 15145.4 mg kg-1 was the metal with major content. Calcium, magnesium, and
aluminum had average contents of 4252.4, 1978.2, and 1074.0 mg kg-1, respectively. The average
amount of manganese was 824.8 mg kg-1. There were no clear differences between the metal contents
of green and black teas. Pattern recognition methods such as principal component analysis (PCA),
linear discriminant analysis (LDA), and artificial neural networks (ANN), were applied to
differentiate the tea types. LDA and ANN provided the best results in the classification of tea
varieties. These chemometric procedures were also useful for distinguishing between Asian and
African teas and between the geographical origin of different Asian teas.
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INTRODUCTION

Tea is one of the most consumed beverages in the
world and is prepared from the leaves of the shrub
Camellia sinensis. Green and black teas are the two
most popular types. Drying and roasting the leaves
produces green tea; black tea is obtained after a
fermentation process. Considering that an estimated
amount of 18-20 billion teacups are consumed daily in
the world (1) its economic and social interest is clear.
The therapeutic value of tea for the prevention and
treatment of many diseases has become more and more
commonly known (2-5). Tea contains flavonoids, miner-
als, and trace elements that are essential to human
health, and, consequently, tea drinking could be an
important source of some essential minerals such as
manganese, which activates numerous essential en-
zymes (6). Other food stuffs contain relatively small
amounts of manganese. Because of the great importance
of the minerals present in tea, many studies have been
carried out to determine their levels in tea leaves and
their infusions. Several techniques such as inductively
coupled plasma-atomic optical emission spectrometry
(ICP-AES) (7, 8), ICP-mass spectrometry (1), electro-
thermal atomic absorption spectroscopy (9), and total-
reflection X-ray fluorescence (6) have been used for
determining metals in tea samples. Though the chemi-
cal composition of the tea varieties is similar, it is
possible to find parameters that may differentiate them.
A better discrimination may be obtained by using
multivariate analysis in combination with some chemo-
metric procedures. Several attempts have been made
to apply this to tea samples (1, 10, 11). The metal
content can be very adequate for these purposes. The
main sources of trace metals to plants are their growth
media; consequently, some differences in the metal

content of samples with different origins could be
inferred.

In the present paper the content of Al, Ba, Ca, Cu,
Fe, K, Mg, Mn, Na, Sr, Ti, and Zn in tea samples has
been determined by using acid digestion followed by
ICP-AES. Principal component analysis (PCA), linear
discriminant analysis (LDA), and artificial neural net-
works (ANN) trained by back-propagation have been
applied to classify green, black, and instant teas ac-
cording to their metal content. The supervised pattern
recognition methods LDA and ANN permit the dif-
ferentiation of tea varieties according to their metal
content. The metal profile in combination with LDA also
has been proved to be useful to differentiate the
geographic origins of the studied tea samples.

MATERIALS AND METHODS

Apparatus. A Fisons-ARL 3410 inductively coupled plasma
atomic emission spectrometer (FISONS Instruments, Valencia,
CA) equipped with a Minitorch burner and a Meinhard
nebulizer was used for metal determinations. The operating
parameters are shown in Table 1.

Reagents and Standard Solutions. Nitric and perchloric
acids (Merck, Darmstadt, Germany) were of analytical grade.
A multi-element standard (1000 mg L-1) for all the analyzed
metals except titanium was obtained from Merck. Titanium
1000 mg L-1 solution was prepared according to the Perkin-
Elmer Pure Atomic Spectroscopy Standards guidelines (Per-
kin-Elmer Corp., Norwalk, CT). Working standard solutions
were prepared by serial dilution of the standards. All aqueous
solutions and dilutions were prepared with ultrapure water
(Milli-Q, Millipore, Bedford, MA).

Samples. Forty-six commercial tea samples were selected
for this study. All of them were obtained from markets and
herbalists. Their types and countries of origin, when known,
as well as their corresponding sample codes, are shown in
Table 2. These tea samples comprised 21 green, 23 black, and
2 instant teas. The geographic origin of 24 samples was
known: 12 were from China, 3 were Japanese, 3 were Indian,
2 were Kenyan, and 4 were from Sri Lanka. Accordingly, an
identification code was assigned to each sample. The code
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consisted of a correlative number followed by a letter (G for
green teas, B for the black ones, and I for instant teas; Ch for
Chinese teas, J for Japanese teas, K for Kenyan teas, and S
for teas from Sri Lanka).

Analytical Procedure. Dried tea samples were mineral-
ized according to a modification of the Lamble and Hill method

(8) as follows: assay portions of 0.50 g of tea sample were
accurately weighed into a clean 100-mL beaker. Concentrated
nitric acid (10 mL) was added, the beaker was covered with a
watch glass, and the material was boiled gently on a laboratory
sand bath coupled with a tuneable thermostat until digestion
was complete. This process took approximately 1 h. A 1-mL
portion of 70% perchloric acid was then added, and heating
was continued for 1 h. Small aliquots of milli-Q purified water
were added to prevent dryness evaporation. After the digest
was cooled, it was filtered and transferred to a 100-mL
volumetric flask that had been rinsed with ultrapure water.
This digestion procedure was validated by using the reference
certified material NIES No. 7 (“Tea leaves”) (8). Accordingly,
with the digestion procedure being validated, no further
studies about the possible matrix effects were carried out.
Three replicate digestions were made for each tea. Three
blanks were prepared in an identical way but omitting the
sample. The average of blank ICP-AES signals was subtracted
from analytical signals of digested samples after interpolation
on calibration graphs. To express the results on a dry basis
the moisture of the samples was determined before analysis.

Data Analysis. Each tea sample was considered as an
assembly of twelve variables (i.e., the contents of the analyzed
metals) which constitute their chemical descriptors. A data
matrix of 44 rows (tea samples) and twelve columns, which
are the mentioned descriptors, was built for use in the
chemometric calculations. The two samples of instant teas
have been considered as outliers and have not been included
in the data matrix because of their difference with the rest of
the tea samples. Pattern recognition methods have been
applied to the data set, including visualization methods such
as principal component analysis (PCA) (12) and supervised
learning methods for classification such as linear discriminant
analysis (LDA) (13) and artificial neural networks (ANN)
trained by back-propagation (14). The statistical package
STATISTICA 99 from StatSoft (15), including the neural
network module, was used for pattern recognition calculations.

RESULTS AND DISCUSSION

Metal Content. The contents of the metals men-
tioned in the previous section were determined in the
46 tea samples. The results, expressed as mg kg-1 on a
dry basis, are shown in Table 3. It can be seen that
potassium is the metal with major content in the
analyzed samples, with an average content of 15145.4
mg kg-1; and in the case of instant teas, its content is
higher, with an average value of 38670.3 mg kg-1.
Calcium, magnesium, and aluminum have average
contents of 4252.4, 1978.2, and 1074.0 mg kg-1, respec-
tively. Lower values for these metals were obtained for
instant teas, namely 295.0, 3577.5, and 614.6 mg kg-1,
respectively. Another important element present in tea
is manganese with an average amount of 824.8 mg kg-1.
The other analyzed metals in tea leaves mostly appear
with values less than those mentioned above. As can
be seen, clear differences appear in the metal contents
of the tea leaves with respect to the instant teas,
meanwhile no apparent distinction appears between
green and black teas. Thus, to achieve a more reliable
tea differentiation, pattern recognition procedures are
applied to the data matrix.

Principal Component Analysis. For a better under-
standing of the discriminating efficiency of the descrip-
tors, a preliminary study based on PCA has been carried
out, despite the a priori knowledge of the class member-
ship of the tea samples.

The most important use of this chemometric method
is to represent the n-dimensional data set in a smaller
number of dimensions, usually two or three. This allows
the observation of groupings of cases, which can define

Table 1. Operating Parameters for ICP-AES

RF frequency 27.12 MHz

operating power 650 w
coolant argon flow rate 7.5 L min-1

plasma argon flow rate 0.8 L min-1

burner type Minitorch
nebulizer type Meinhard
sample flow rate 2.3 mL min-1

Detection wavelengths/nm
Al 396.152
Ba 455.403
Ca 393.366
Cu 324.754
Fe 259.940
K 766.490

Mg 279.553
Mn 257.610
Na 589.592
Sr 407.771
Ti 334.941
Zn 213.856

Table 2. Analyzed Tea Samples

code origin classa

1G unknown green
2G unknown green
3GCh China green
4G unknown green (Mint)
5GCh China green
6G unknown green
7G unknown green
8GCh China green (Jasmine)
9GCh China green (Gunpowder)
10GJ Japan green
1BI India black (Darjeeling)
11G unknown green (Earl Grey)
12GCh China green (Chum Mee)
13GJ Japan green (Sencha)
14GJ Japan green
15GCh China green (Gunpowder)
16GCh China green (Genmaicha)
17G unknown green
18G unknown green
19GCh China green (Gunpowder)
20GCh China green (Jasmine)
21GCh China green (Jasmine)
2B unknown black (Earl Grey)
3BCh China black
4B blend black (English breakfast)
5B unknown black (Teekane)
6BS Sri Lanka black (Ceylon)
7BI India black (Assam)
8BS Sri Lanka black (Ceylon)
9B blend black
10BK Kenya black
11B blend black
12B blend black (Earl Grey)
13B unknown black
14B unknown black (Lemon)
15B unknown black
16B unknown black
17B blend black (Teekanee)
18B blend black
19BCh China black
20BS Sri Lanka black (Ceylon)
21BS Sri Lanka black (Ceylon)
22BI India black (Assam)
23BK Kenya black
1I unknown Instant
2I unknown Instant

a Some additional known characteristics of the teas are included
in parentheses.
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the structure of the data set. PCA finds the maximum
variations in the data set and forms new variables
known as principal components (PCs) (16), such that
each successive PC accounts for as much of the remain-
ing variability as possible and each new variable must
be totally independent of all other variables. In this case,
PCA was applied to our data. At a glance, no clear
differentiation can be appreciated in the tea samples.
Another type of information that can be obtained from
PCA is which are the most discriminating of the studied
variables. Considering the loadings of the variables for
PC1, iron, titanium, sodium, and aluminum are the
metals with the most contribution and, hence, the most
discriminating power.

Classification by Linear Discriminant Analysis.
As it has been explained in the description of the
samples, the data set is composed of 21 green teas and
23 black teas. Because of the a priori knowledge of the
class membership of the samples, it is possible to apply
supervised pattern recognition methods to the data. In
our case, we have 44 samples and two classes: green
(G) and black (B). By using linear discriminant analysis
(LDA), suitable classification rules for assigning cat-
egories to samples can be calculated. By performing
linear combinations of the selected descriptors the so-
called discriminant functions are obtained which best

separate the classes according to the maximization of
the F-ratio of between classes sum of squares and within
classes sum of squares (17). After applying LDA to our
data, one discriminant function, DF1, was calculated as
follows:

Looking at the a posteriori probabilities, all samples
were correctly classified except sample 5GCh, which
represented a recognition ability of 97.8%. To evaluate
the classification performance, the leave-one-out method
(18) was used as a validation procedure. A prediction
ability of 93.5% was obtained. LDA being applied strictly
speaking to separation of classes with linear boundaries
may fail in cases where the distribution pattern is
nonlinear. In such a way, ANN methods proved to be
very useful.

Classification by Artificial Neural Networks.
Artificial neural netwoks such as multi layer percep-
trons (MLPs) trained by back-propagation (BPNN) are
efficient tools for classifying and discriminating food
products. The MLP consists of formal neurons and
connections (weights) between them. The neurons are

Table 3. Metal Content (mg kg-1 dry basis) of Tea Samplesa

sample Zn Mn Fe Mg Cu Ti Al Sr Ca Ba Na K

1GCh 31.7 667.9 321.8 2080.4 16.4 19.8 1099.2 11.5 4044.5 6.6 80.2 15031.2
2G 34.9 804.1 269.6 2241.3 17.8 15.5 1258.9 18.3 6324.0 10.6 164.1 14776.1
3GCh 26.6 1595.4 259.1 2160.0 19.4 14.3 2230.7 23.1 5630.2 6.6 42.6 12600.8
4G 33.0 675.4 2036.7 4272.5 24.0 262.9 2560.4 72.4 Ndb 8.8 1760.0 15088.3
5GCh 28.7 977.5 345.2 2148.3 21.7 19.6 1695.8 34.9 5044.2 8.0 81.2 14209.9
6G 30.6 869.0 352.2 2008.3 14.1 33.4 928.1 12.2 3055.3 9.0 64.0 16111.9
7G 26.6 881.0 247.4 1968.1 15.6 20.8 1063.9 17.1 4691.7 9.5 100.1 14996.2
8GCh 36.8 683.1 239.3 1780.7 20.0 15.9 796.5 10.4 2893.3 9.9 63.2 15660.6
9GCh 31.7 774.7 324.7 1899.8 14.3 23.2 904.3 12.4 2905.0 7.6 53.2 15885.1
10GJ 21.0 660.7 193.0 2066.4 9.4 12.3 927.6 12.0 4029.1 1.3 130.9 14610.0
1BI 37.7 460.7 170.9 1872.9 24.4 8.1 465.9 10.7 3844.3 10.2 54.5 16359.8
11G 22.8 744.7 147.6 2041.7 12.5 7.7 850.5 10.6 3760.8 12.8 77.3 14948.4
12GCh 26.8 838.8 290.9 1950.6 16.4 18.2 991.6 11.8 3730.4 10.4 201.7 14865.6
13GJ 24.6 1069.7 144.5 1778.5 10.2 5.7 952.5 11.8 3984.4 9.7 33.9 13284.3
14GJ 25.2 928.9 140.9 1814.2 9.7 5.2 919.5 13.6 3618.1 7.3 37.7 11900.5
15GCh 25.2 1317.2 196.6 1489.5 13.5 5.9 1122.3 13.9 3641.3 9.2 66.5 14031.5
16GCh 18.7 971.1 108.5 2021.8 19.2 0.6 1472.5 10.7 5193.3 10.4 44.3 12242.6
17G 24.6 1225.0 257.5 1933.7 14.8 13.0 1177.8 18.7 4297.8 2.9 46.3 14194.8
18G 22.8 1496.6 272.9 1691.0 15.9 14.0 1327.2 12.5 4932.4 9.2 60.1 12758.6
19GCh 28.5 972.6 239.6 1770.9 14.8 14.3 828.8 16.9 3637.3 12.3 59.1 14274.3
20GCh 45.3 691.6 204.0 1894.0 25.4 10.7 745.3 16.4 3998.1 15.0 109.4 16994.1
21GCh 51.0 777.0 245.0 2210.0 37.0 16.0 911.0 17.0 4536.0 15.0 117.0 15778.0
2B 43.2 1004.1 1000.1 2131.1 31.0 60.7 2065.7 17.3 5475.0 5.7 249.2 14330.5
3BCh 49.6 1114.4 946.2 2184.5 37.5 65.2 2210.1 17.8 5203.3 6.5 349.1 14227.6
4B 35.8 982.6 388.8 1987.3 17.6 26.8 972.7 18.9 4040.5 5.8 69.6 16527.5
5B 25.8 813.5 454.9 1957.2 15.0 69.8 1286.1 25.5 4366.5 6.0 51.4 16899.2
6BS 34.8 225.9 107.1 2009.3 24.6 8.3 793.5 12.9 4642.9 14.0 53.6 16398.0
7BI 26.4 431.4 90.3 2126.6 16.3 2.7 510.8 18.5 4540.5 5.2 76.4 17654.0
8BS 31.5 530.9 121.7 1917.4 17.6 6.5 915.2 23.3 4486.9 7.4 49.4 15939.8
9B 21.9 599.3 182.1 2002.7 14.2 12.0 624.1 24.8 4076.0 7.3 35.1 16335.7
10BK 26.9 874.6 282.4 1738.0 11.8 22.8 704.1 38.7 3212.2 12.8 42.9 17196.2
11B 26.7 462.6 209.3 1778.4 19.8 15.5 724.1 24.9 3596.9 13.3 50.0 16354.2
12B 23.7 843.4 415.7 2028.0 16.9 15.6 1180.5 22.6 5245.4 6.9 65.0 15955.8
13B 39.6 1281.4 759.3 2217.6 37.2 42.3 1891.8 21.0 5525.5 7.1 166.0 15433.9
14B 21.2 756.1 149.5 1737.8 13.3 13.2 861.4 21.9 4359.2 5.4 138.0 16682.7
15B 28.0 1051.6 302.5 1946.7 18.6 22.3 662.1 13.1 4309.9 5.9 47.5 16304.9
16B 23.3 778.8 254.6 1751.1 12.4 24.6 1341.2 33.7 4852.7 5.4 43.4 14133.6
17B 20.8 1003.6 296.7 1809.3 11.4 49.3 1223.5 29.9 4620.4 5.3 75.1 14788.3
18B 23.7 1001.3 285.0 1810.5 15.7 30.3 1135.6 20.9 4550.7 6.7 70.1 13835.5
19BCh 35.8 664.4 176.0 1699.5 22.5 14.5 798.4 11.3 4150.5 7.7 84.0 14840.4
20BS 20.0 315.6 141.5 1717.0 18.2 10.4 549.1 11.5 3335.2 10.7 69.7 16700.3
21BS 36.8 148.0 74.0 1879.4 26.5 2.8 509.8 7.2 3619.4 7.3 43.8 14626.8
22BI 23.9 527.0 108.3 1905.9 15.5 2.9 474.1 15.9 3862.2 7.4 37.9 16022.5
23BK 24.4 797.6 247.2 1611.3 11.1 20.5 593.0 38.0 2990.6 13.3 31.7 14606.7
1I 39.8 1096.9 14.3 3565.8 7.6 0.2 612.6 3.5 338.4 3.5 109.0 38772.4
2I 38.4 1243.3 28.2 3589.1 10.3 0.5 616.5 2.5 251.5 1.5 80.2 38568.1

a Average of triplicate determinations. % RSD < 8. b Nd: not detected.

DF1 ) -1.16 Zn - 0.88 Mn + 1.72 Fe - 2.18 Mg +
1.78 Cu + 1.43 Ti - 1.80 Al + 1.25 Sr + 1.19 Ca -

0.75 Ba - 0.65 Na + 0.16 K
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arranged in layers (an input layer, one or more hidden
layers, and an output layer) and the connections are
unidirectional from the input to the output. Adjacent
layers are fully connected and no connections between
neurons within the same layer exist.

A formal neuron sums up incoming signals (multiplied
by the connection weights), subtracts a threshold value
(called bias), and calculates the output signal using the
so-called transfer function. Neurons can use different
transfer functions. Input ones simply distribute the
elements of the data matrix row to the hidden layer
neurons without any further computation. Hidden layer
neurons have a sigmoidal transfer function which limits
the neuron’s output signal to values between 0 and 1.
The output neurons have also a sigmoidal transfer
function. Training objects are taken randomly. After
each input, all the weights are changed according to the
“delta rule”. In the back-propagation of errors learning
scheme, one pass of all the training objects through the
network is called an iteration cycle or an epoch.

In our case we have used a MLP with three layers
according to the architecture 12 × 2 × 2, consisting of
12 neurons (the content of metals) in the input layer, a
hidden layer with two neurons, and an output layer with
two neurons corresponding to the classes to be assigned
(B and G).

An important step in the development of a classifica-
tion strategy is the splitting of the data set into a
training data set (utilized to estimate the recalling
efficiency) and a validation or test set (used to evaluate
the performance of the prediction ability for new
samples). This strategy is more complex for the case of
neural networks because of the overfitting problem (19).
Thus, an additional monitoring set is necessary to stop
the training at the suitable number of epochs in order
to avoid the learning of idiosyncrasies present in the
training data, which leads to overtraining. Accordingly,
although the aim of the use of MLP is for illustrative
purposes only (because there is no validation) it is
possible to select some samples to establish a verifica-
tion or monitoring set. In our case several verification

sets of samples were selected by considering two class
G samples and two class B samples.

When performing our MLP, initial weights were taken
randomly within the interval -0.1, 0.1. The learning
rate (η) and the momentum (µ) were fixed to 0.2 and
0.5, respectively. Target outputs were normalized to 0-1
and written in binary form: 1 0 (class G) and 0 1 (class
B). Both training and monitoring errors (as RMS)
decreased monotonically with the increasing number of
cycles up to 1000 epochs without showing overfitting.
The recalling ability of the training sets led to 100% hits.
The classification procedure was then validated by
applying the leave-one-out method by selecting 1000
epochs and the prediction ability was of 95.6% hits on
average. These results are slightly better than those
obtained from LDA, and are suitable enough to perform
tea classification.

Geographical Classification of Tea Samples.
Considering the tea samples with a known origin, LDA
was applied in order to get a separation attending to
the geographical origin. In this case, the data set was
constituted by 24 samples. Five categories were consid-
ered: Kenyan, Chinese, Japanese, Indian, and teas from
Sri Lanka. From LDA calculations four discriminant
functions were obtained. Figure 1 represents the scatter
plot of samples obtained when using as axes DF1 and
DF2. There is a clear separation between the African
(Kenya) and the Asian teas (China, Japan, Sri Lanka,
and India), which appear as two well-differentiated
clusters. When observing the Asian group of samples,
it can be seen that they are grouped according to their
country of origin. All the Chinese teas appear together,
well separated from the rest of the Asian samples, and
the same occurs for the other three classes of Japanese,
Sri Lankan, and Indian teas. According to the a poste-
riori probabilities, the method has a recognition ability
of 100%. In this case and because of the smaller number
of samples in this particular data set, it is worthless to
apply the leave-one-out method to calculate the predic-
tion ability. Many more samples would be needed to
evaluate the prediction ability of the metal contents in

Figure 1. Scatter plot of the two discriminant functions for tea samples with known geographical origin: China (O), Japan (0),
India ()), Sri Lanka (4), and Kenya (b).
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relationship with the geographical origin, though it has
been established that these metal parameters are good
chemical descriptors to recognize the country of origin
of tea samples.
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